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Abstract— The analysis of bone infiltration patterns is a key
issue in assessing the progression state of Multiple Myeloma
(MM) and corresponding treatment response. MM is a blood
affecting disease, that leads to an uncontrolled proliferation and
malignant transformation of plasma cells and B-lymphocytes
and ultimately can lead to osteolytic lesions first visible in
Magnetic Resonance Imaging (MRI). It is particularly impor-
tant to reliably assess lesions as early as possible, since they
are a prime marker of disease advance and a trigger for
treatment. However, their detection is difficult. Here, we present
first results for the prediction of lesion progression based on
longitudinal T2 weighted MRI imaging data. We evaluate a
predictor for the identification of early signatures of emerging
lesions, before they reach report thresholds. The algorithm is
trained on longitudinal data, and visualizes high-risk locations
in the skeleton.

I. INTRODUCTION

Multiple Myeloma (MM) is a blood affecting malignancy
of the bone marrow, that disturbes the generation pathway
of plasma cells and B-lymphocytes and results in their un-
controlled proliferation and malignant transformation. Con-
sequently, it leads to the alteration of bone remodelling
mechanisms, by promoting bone resorption and inhibiting
bone formation [9] and thus triggers the formation of focal
or diffuse bone marrow infiltration. The gold standard for
observing these initial infiltration patterns is MRI [1][7][4].
Subsequently, the progression of the disease leads to the
building of osseous destructions, which are observable us-
ing low-dose Computer Tomography (CT) [5]. Figure 1
illustrates the infiltration pattern of a focal lesion evolving
over four examination time points of a single patient. MM
evolves over a precursor state of Monoclonal Gammopathy
of Undertmined Significance (MGUS) and developes to an
asymptomatic form of the disease called smoldering Multiple
Myeloma (sMM), which progresses to the symptomatic form
of MM [4]. Thus, it is particularly important to identify
sMM patients of high risk of developing MM to enable
early treatment [6]. Early detection includes the tracking of
image positions over time to identify early signatures of their
forming and to predict infiltration patterns of future disease
states. The challenges here lie first in the accurate alignment
of subject whole body images, second in imaging artefacts,
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Fig. 1. Focal bone infiltration patterns are visible in MRI scans over
multiple examination time points of one patient’s sacrum.

and subtle non rigid deformations, and third in capturing
the heterogeneity of diffuse infiltration patterns and their
imaging signatures. Further variability is caused by different
treatment strategies and patient specific treatment responses,
and progression speed.

A. Contribution

In this work we show and evaluate a predictor for fu-
ture bone infiltration patterns oberserved in longitudinal T2
weighted MRI data. We propose a learning routine for a
local predictor of lesion emergence and change, and show
first results for prediction on T2 weighted MRI data. For
providing predictive signatures of bone lesions, longitudinal
relationships between subsequent stages of bone lesions
and corresponding infiltration patterns of MM patients are
assessed. The contribution of this work is three fold: (1)
the longitudinal alignment of multiple bodyparts in whole
body MRIs, (2) a classifier incorporating data from different
disease stages in MM and (3) a probability prediction to
identify bone regions evolving to diffuse or osteolytic lesions.
An overview of the methodology proposed is given in
Section II. The dataset and results of the evaluation are
presented in Section III and this paper concludes in Section
IV with an overview of possibilities for future work.

II. METHODOLOGY

In this section we summarize the processing steps for
longitudinal alignment of T2 weighted MR images and the
training for estimating a local lesion risk for future lesion
emergence. In Figure 2 the computation pipeline proposed is
visualised, which consists of a data acquisition component,
data preprocessing component, a predictor training routine
and a lesion risk score computation component.
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4. Lesion Risk Score Computation 
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Fig. 2. Lesion Evolving Risk Computation Pipeline

A. Alignment of Longitudinal Acquisitions

The longitudinal analysis of subsequent lesion states of
a subject requires precise registration of a patient’s data
Iti = {It1 , ...ItM} over several examination time points ti. In
this a work a patient’s image at a timepoint ti is aligned to
all subsequent timepoints x = ti+1, ..., tM , depending on the
number of available data. We applied bias field correction
before alignment using the FAST toolbox1 [3] integrated in
the FMRIB Software Library (FSL)2. The registration proce-
dure is two fold: (1) Affine alignment is performed using a
block matching approach for global registration (reg aladin).
(2) Non-rigid registration ( reg f3d) is performed to further
transform the image of the affine registration step locally
to the target at time point x. Both methodologies used
are integrated in the NiftyReg toolbox3 [8]. The performed
registration offers accurate correspondences between follow-
up images, which serves as basis for the extraction of
imaging data depicting the development of bone infiltration
and for the local lesion risk score calculation. The registered
images were manually inspected if the lesions’ position are
in correspondence between examination time point. Figure
3 visualises a source scan of Patient 24 at examination time
point 002 (left), the transformed source scan after affine
registration (2nd column), the transformed source scan after
affine + non-rigid registration (3rd column) and the target
scan at examination time point 004 (middle).

B. Predictor Training Routine

In this study we used acquisitions from the body region
of thorax, abdomen and pelvis (please cf. Section III for
details regarding the dataset used). This area is considered,
since most lesions occur there. For the application of a
risk predictor we differentiate between the prediction of two
lesion types: on the one hand lesions which emerge over
time, i.e. which are not reported in the first scan, but in
the subsequent scan, and on the other hand growing lesions,

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
[accessed 19th of February 2018]

2https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed
19th of February 2018]

3http://cmictig.cs.ucl.ac.uk/research/software/
software-nifty/niftyreg [accessed 19th of February 2018]

which are annotated in both observed examination time
points. Image patches are extracted for every patient around
a lesion’s region longitudinally over following states. Two
different patch sizes are evaluated within this work (8 × 4
× 8, 16 × 4 × 16 voxels with a voxelspacing of 1.302 mm
× 6 mm × 1.302 mm). Data augmentation is performed by
rotating every patch in steps of 20 degrees and randomly
alternating the lesion location within the patch to obtain a
higher number of training data and a more variable dataset.
This results in 72 different patches per lesion. To summarize,
for 53 emerging lesions we obtain 3816 patches and for 44
growing lesions 3168 patches are created. For the generation
of a test and training set, lesion wise leave one out cross
validation is performed in such a way, that a testset consists
of the 72 patches created from one single lesion and the
training set of the remaining ones, i.e. in case of emerging
lesions the testset would consist of 72 patches of one lesion
and the train set of 3744 patches of the 52 remaining lesions.

C. Prediction of Local Lesion Evolving Risk
In this work we demonstrate the application of predicting

future lesions and mark corresponding high risk locations, by
incorporating knowledge from early signatures of emerging
bone lesions to train a predictor. After the registration process
the aligned T2 weighted MR images Iti(It j) with correspond-
ing subsequent time points t j of the same patient lie in the
same space of the target image It j and corresponding anno-
tation S j of the lesion . In a next step these obtained pairs
(Iti(It j), S j) serve as basis for patch creation and subsequent
training of a random forest classifier predicting future lesion
labels from the present image data. This results in a score for
each voxel position V expressing the probability determined
by the trained random forest for a new input image.

III. RESULTS
In this section the dataset used for evaluation is presented

and qualitative and quantitative results for the evaluation of
the application of machine learning using random forests to
predict lesion location is discussed.

A. Study Details
Within this study 220 longitudinal whole body (wb) MRIs

from 63 patients with smoldering multiple myeloma were
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Fig. 3. Visualisation of the registration procedure of follow-up images of patient 24 from time point 002 to time point 007. The annotation of one lesion
at time point 007 is visualised in red in all images in the first row. In the second row details of the lesion regions are illustrated.

TABLE I
DEMOGRAPHICS OF PARTICIPANTS

Patients 63 (39 male)
Age range (yrs) 29 -76

Median age at initial MRI (yrs) 55
Therapy Radiation or resection

Median interval between MRIs 13 months
Median observation time 46 months

acquired between 2004 and 2011, following the 2003 guide-
lines [2]. At least one wbMRI was performed per patient.
According to the IMWG consensus statement patients are
considered to have symptomatic myeloma with the require-
ment of treatment, if more than one focal lesion with a
diameter greater than 5 mm is present [1]. Thus, the focal
lesions’ annotation start at a lesion size bigger than 5 mm
and is performed manually by medical experts. In Table I
the demographics of the study participants is summarized.
The protocol of this study was approved by the institutional
ethics committee and all subjects gave their informed consent
prior to inclusion. The scanning was performed on a 1.5
Tesla Magnetom Avanto (Siemens Healthineers, Erlangen,
Germany) scanner. For the T2 weighted turbo-spin echo
sequence (repetition time (TR):3340 ms milliseconds (ms),
echo time (TE): 109 ms, section thickness (ST): 5 mm,
acquisition time (TA): 2:30 min was performed of the head,
thorax, abdomen, pelvis and legs using a coronal orientation.
The duration of a scan was approximately 40 minutes long,
no contrast medium was given.

B. Quantitative Evaluation Result of Lesion Risk Prediction

For the quantitative evaluation and for obtaining compa-
rability between the different tested setups, the Area Under
the ROC Curve (AUC) is computed, based on the probability
estimates of the local lesion risk predictor for the test patch

using scikit learn4. In Table II the mean AUC for emerging
and growing lesion types are summarized. For every lesion
type two different patch sizes are evaluated.

TABLE II
SUMMARY RESULTS

Lesion Type Patch Size Mean AUC
Emerging 8 x 4 x 8 0.904146

16 x 4 x 16 0.8887
Growing 8 x 4 x 8 0.72949

16 x 4 x 16 0.89803

C. Qualitative Evaluation Result of Lesion Risk Prediction
Figure 4 illustrates a prediction result for an emerging

lesion. The test image (left) is a transformed image from
examination time point 001 to 007 using the warping in-
formation obtain by the registration procedure introduced in
Section 2. The extracted patch of this image in the region of
the lesion visible in the target image I007 (right) is visualised
in the first row in the center, with the predicted label in green
and the annotation of the future lesion position extracted
from image I007 in blue. In the second row the predicted
probability map of the local lesion risk score is visualised,
where orange shows regions of high probability and blue of
low probability.

D. Discussion
For emerging lesions the mean AUC decreases with an

increasing patch size. In contrast to this the mean AUC is
increasing with increasing patch size for growing lesions. It
is observable that emerging lesions achieve an approximately
0.20 higher mean AUC for the smaller patch size compared
to similar mean AUC values for patches of size 16 x 4 x 16.

4http://scikit-learn.org/stable/auto\_examples/
model\_selection/plot\_roc.html[accessed 2nd of March
2018]
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Fig. 4. Prediction of an emerging lesion from examination time point 001 to time point 007. The predicted label is visualised in green, below the
underlying Local Lesion Risk Score probability map is shown and the manual annotation is visualised in blue.

IV. CONCLUSION

We presented an application of a classifier to predict a
local lesion emergence risk for the analysis and visualisation
of regions of high risk for bone lesions to emerge. A random
forest predictor is trained using lesion image patches and
annotations of subsequent lesions states of the longitudinal
MR T2 weighted dataset. A challenge of this application
is the accurate longitudinal alignment between images of
subsequent examination time points of one patient. This is
the first attempt to train a classifier to predict bone infiltration
patterns in multiple myelome, while recent approaches are
focusing on the detection and tracking (e.g. [10] for PET-
CT) with deep learning techniques. So far the predictor
is limited to image patches already located at approximate
lesion locations focusing on the delineation of the lesions.
We aim to adapt the proposed method to predict probability
maps for entire images and different modalities. This will
enable the longitudinal analysis of bone infiltration patterns
caused by the progress of multiple myeloma.
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