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Abstract. As maturation of neural networks continues throughout child-
hood, brain lesions insulting immature networks have different impact
on brain function than lesions obtained after full network maturation.
Thus, longitudinal studies and analysis of spatial and temporal brain
signal correlations are a key component to get a deeper understanding of
individual maturation processes, their interaction and their link to cog-
nition. Here, we assess the connectivity pattern deviation of developing
resting state networks after ischaemic stroke of children between 7 and 17
years. We propose a method to derive a reorganisational score to detect
target regions for overtaking affected functional regions within a stroke
location. The evaluation is performed using rs-fMRI data of 16 control
subjects and 16 stroke patients. The developing functional connectivity
affected by ischaemic stroke exhibits significant differences to the control
cohort. This suggests an influence of stroke location and developmental
stage on regenerating processes and the reorganisational patterns.

1 Introduction

Human brain development starts during pregnancy and proceeds in building
structural as well as functional trajectories through adulthood until senescence
[17]. Morphological, functional, and cognitive maturation is shaped by genetic
and environmental influence such as learning processes and experience after
birth, and the resulting structure varies substantially across individuals [21].
While the functional and morphological organization of the adults brain is known
to a large extent, we are only starting to understand its emergence and matura-
tion [17]. We know that we can observe distributed components similar to those
in adults already in neonates [8], while substantial changes to the brain network
structure occur during childhood, such as an increase in long-, and a decrease
in short-distance connections from infants to adults [5]. However, these obser-
vations primarily focus on the comparison of age snapshots, and do not capture
multivariate temporal change patterns of the connectome. There is a particu-
larly critical gap in knowledge concerning normal development confronted with
disease or adverse events such as stroke.



Paediatric Ischaemic Stroke (IS) is caused by a decreased blood flow in cerebral
vessels (ischaemia), which in an irreversible case leads to the death of brain
cells and forming of brain lesions [15]. Stroke in children is a rare event, with
an international incidence of 1.2 to 13 per 100,000 children per year under 18
years of age [19]. Children, who survive an IS, suffer from lifelong motoric or
cognitive disabilities as well as developing or learning problems. Their outcome
varies over age, the stroke location or additional comorbidities [15]. Functional
MRI techniques (fMRI) enable the measurement of functional organisation [4]. In
comparison to task-based fMRI, pediatric resting state (rs)fMRI aims to image
neural activation and analyse brain signals due to their temporal correlation
independent of a stimulus [1] in a non-invasive way.

Plasticity is the process which enables the central nervous system to dynam-
ically adapt to external stimuli. Natural plasticity is induced by the age and
developmental related changes of the brain and is triggered by learning and ex-
perience [2], where adaptive plasticity refers to pathology related modifications,
e.g. functional an structural reorganisation of brain tissue after stroke [13]. Also
genetic factors can drive these processes [12]. While we have gained some under-
standing in reorganization processes in adults [14], we have poor understanding
of how reorganization interacts with development. Resting state fMRI enables
the study of these processes driving the functional and structural organisation.
Ultimately they can lead to improved functional outcome of children suffering
from brain injuries, by developing novel interventional techniques or adapting
therapy, dependent on the developmental stage of a disease [13].

Challenges The challenges for studying reorganisation in children lies in captur-
ing the dynamics of interactions between adaptive and developmental processes.
After a damage, plasticity and vulnerability of the brain influence recovery to-
gether with the injuries severity, the age and the time since damage [2]. Func-
tional recovery after brain injury depends on the ability of the brain to adapt to
changes [9]. Recent studies suggest that cognitive abilities after brain injury is
dependent on the plasticity of neural networks that control brain functions [10].
Thus, the impact of brain injury on cognition is best studied by investigating
neuronal networks rather than circumscribed areas [3]. As maturation of neural
networks continues throughout childhood [5], brain lesions insulting immature
networks have a different impact on function than lesions acquired after full net-
work maturation. A deeper understanding of individual continuous maturation
processes, their interaction, and their link to cognition is essential for our under-
standing of the functional brain architecture, treatment and optimal promotion
of children [12].

Contribution The methodological contribution of this work is two-fold: (1) we
propose a technique to quantify connectivity pattern deviation in the develop-
ment of functional connectivity, and (2) a method to track regions which exhibit
similar connectivity characteristics as source regions such as an area impacted
by stroke after reorganization. We hypothesize that (1) stroke subjects exhibit



higher deviation from a control population age specific mean than controls, and
(2) reorganization causes new regions to adopt connectivity characteristics of
areas impaired by stroke due to reorganization. We adapt an approach by [16]
to extract connectivity pattern deviation over development and reorganisational
patterns of functional connectivity in children induced by laesions forming after
an ischaemic stroke. The methodologies proposed are summarised in Section 2.
The evaluation setup and computed results are documented in Section 3 and a
discussion and possibilities for future work are given in Section 4.

2 Methodology

In this section the methodology is introduced, by providing (1) a Connectivity
Profile Deviation (CPD) score to analyse deviations between control and stroke
subjects and (2) by tracking reorganization using the the proposed prior. For
the formulations we assume a graph based representation of the cortical surface,
which is previously normalized to a standardized surface consisting of nodes x =
1 . . . N . For every subject the Connectivity Matrix CM ∈ RN×N is computed
and stroke masks are annotated (for more details regarding the preprocessing
and dataset used cf. Section 3).

Age specific reference of connectivity profiles across the cortex Accord-
ing to the size of the dataset and preliminary analysis we decided to perform
element wise linear regression of correlation coefficient matrices of control sub-
jects to derive the slope B ∈ RN×N . An age matched correlation matrix CM is
then computed using Equation 1.

CM
age

= B ∗ age + B0 (1)

Identifying deviations of local connectivity characteristics In a second
step the CPD score D ∈ R1×N is computed between every single subject’s
CMs and the age matched CM

ages
using Pearson Correlation Coefficient (PCC)

(cf. Equation 2).

Ds
x = 1− PCC(P s

x , P
ages
x ), x = 1 . . . N (2)
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Fig. 1: Schematic illustration of the computation of the CPD score.
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Fig. 2: Schematic illustration of the computation of the reorganisation score.

Therefore, a connectivity pattern P s
x ∈ R1×N of a vertex x and the corresponding

age matched connectivity pattern P
ages
x ∈ R1×N of controls are computed, where

P s
x = CMi=x,j , P

ages
x = CM

ages
i=x,j , j = 1 . . . N (cf. Fig. 1).This CPD score is

computed for every subject s in the dataset (control and stroke cases).

Finding target areas of reorganization In this work we propose a ReOr-
ganisation Score (ROS) for identifying possible regions, where functional net-
works of a stroke region transfer to. For clearer understanding its computation
is schematically illustrated in Fig. 2. In a first step the corresponding stroke
case’s age matched CM

age
is computed. In a second step for every stroke sub-

ject separately the stroke mask is used to determine the set u, 1 . . .W,W ≤ N
of nodes corresponding to the stroke regions. In a third step we compute the
Reorganisation Maps (RM) RMs

u,z and RMages
u,z between connectivity patterns

using Equation 3 and 4. We define z = x \u as set of nodes not belonging to the
stroke region. P

ages
ul

= CM
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), s = 1 . . . S (4)

After the calculation of the RMs we extracted the vertex of set u with the
maximum value. Since RM of the control model show higher values as RM of
the stroke, we decided (for obtaining comparability for visualisation purposes)
to perform histogram equalisation, resulting in two vectors RM∗s ∈ R1×M and
RM∗ages ∈ R1×M . Subsequently, we estimate the ROS of a subject S as defined
in Equation 5.

ROS = RM∗s −RM∗ages , (5)



Table 1: Participant demographics
Control Pediatric stroke

Sample size 16 (7 female) 16 (5 female)

Excluded 4 5

Mean age, yr (Standard Deviation) 11.2 (3.19) 11.63 (3.14)

Stroke location (number of subjects) - RH (7), LH (7), RH+LH (2)

3 Results

The participants in this study are 32 children between 7 and 17 years consisting
of 16 control cases and 16 ischaemic stroke cases (cf. participant demographics
in Table 1). Subject No.15 (control), No.17 (stroke), and No.21 (stroke) were
excluded, due to technical issues during acquisition. During the preprocessing
phase three stroke Subjects (No.3, 10 and 22) and control Subjects (No.26,
33 and 34) were excluded because of high motion artefacts (5 subjects) and
severe stroke (more than the half of the size of a hemisphere was affected). The
stroke events occurred at different spatial locations on the right (RH) or left
hemisphere (LH). The children were right-, left- or mixed handed. The time
frame between scan event and stroke event, as well as the range of the age at
stroke of the children ranges from 0 to 15 years. All participants’ guardians
(parents) were informed about the aim of the study and gave their written,
informed consent prior to inclusion. The protocol of this study was approved by
the national ethics committee of the Medical University of Vienna and performed
in accordance with the Declaration of Helsinki (1964), including current revisions
and the EC-GCP guidelines. The scanning was performed on a 3T TIM Trio
System (Siemens Medical Solution, Erlangen, Germany) Scanner and rs-fMRI
measurements were performed using single-shot, gradient-recalled, echo-planar
imaging with the following setup: TR = 2000 ms, TE = 42 ms, FOV = 210 x
210mm, slices = 20, gap between slices = 1 mm, slice thickness = 4 mm, frames
= 150 volumes. All subjects are scanned in an awake state with open eyes for 5
minutes. To restrict head motion, pillows are used as fixation on both sides of the
child’s head. The probands wore headphones to attenuate the noise level during
scan. All study participants watched a video, explicitly designed for children,
which showed and explained an MRI acquisition procedure.

Anatomical and Functional Preprocessing Anatomical and functional pre-
processing is performed using Freesurfer1[6] and FSL2[11]. The functional pre-
processing includes a registration to the anatomical data, head motion regression
and bandpass temporal filtering (0.01 - 0.1 Hz) to remove constant offsets and
linear trends. Cerebral signals of the stroke and control cases are resampled to
common FreeSurfer fsaverage5 space [7]. After this alignment every subject’s
cortical surface is represented as a standardized mesh consisting of 20484 nodes.

1 http://surfer.nmr.mgh.harvard.edu [accessed 16th May 2017]
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL [accessed 16th May 2017]

http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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Fig. 3: Visualisation of the CPD score in control subjects during ageing: 6 control
subjects and their deviation to the age matched average, and the visualisation
of the change: red regions exhibit increased deviation / deviation change, while
blue regions are more stable.

Fig. 4: Visualisation of CPD score of LH and RH within the stroke and control
cohort (CPD scores of all subjects at same age are grouped here). Control cases
show symmetric mean CPD between RH and LH and a decrease according to
increasing age. The CPD scores of stroke subjects show higher means on the
hemisphere of stroke location.

After resampling the data are spatially smoothed using a 4 mm FWHM Gaussian
filter. For the identification of correlating regions, the PCC is computed between
the time course of a node x(t)i in each subject’s brain and every other node’s
x(t)j time course. This results in a correlation coefficient matrix CMi,j ∈ RN×N ,
where N is the number of nodes observed, i = 1 . . . N the ith row and j = 1 . . . N
the jth column of the matrix [18]. For every subject in the stroke cohort masks
of brain lesion are annotated by an expert and also preprocessed using the in-
troduced preprocessing pipeline.

Deviation of local connectivity characteristics in the control cohort
Fig. 3 illustrates the CPD score for control subjects of different age (left) and
its change over increasing age (right). The intersubject deviation of controls is
minimal in the visual, sensory and motor cortices and correlates with increasing
age to the deviation estimates in [16] of adult controls. High deviation is observed



C
P

D
 S

C
O

R
E

 S
T

R
O

K
E

Stroke Right HemisphereStroke Left Hemisphere

14yrs

8yrs

16yrs

13yrs9yrs

15yrs

Stroke Location

mediainfarct LH mediainfarct RH

Fig. 5: Visualisation of CPD score of LH stroke subjects (left) and RH stroke
subjects (right).

in the temporal cortex including primary auditory cortex, Wernicke’s area, in the
prefrontal cortex and parietal lobe. Considering the age a decrease of deviation
in the heteromodal regions is observable with increasing age also visible in the
corresponding boxplot of CPD scores in Fig. 4 (left).

Deviation of local connectivity characteristics in the stroke cohort For
the stroke subjects RH and LH stroke cases are grouped together for clearer
visualisation in Fig. 5. The stroke cohort shows higher variabilities compared
to the control cohort, which overlaps with the hypothesis that stroke effects the
reorganisation of connectivity networks, resulting in higher CPD. It is observable
that higher intersubject CPD over 0.8 are observable on the hemisphere of stroke
location also visible in the corresponding boxplot of CPD scores in Fig. 4 (middle,
right).

Target regions of reorganisational processes To evaluate the ability of the
ROS to detect reorganisational regions we first devided the brain surface into
17 cortical networks using the parcellation proposed by Yeo et al. [20], which
is computed based on rsfMRI acquisitions of 1000 subjects and additionally
provides fsaverage 5 surface labels. For every region (total 36 - LH and RH are
observed separately) the ratio of stroke voxels and the region’s mean ROS and
mean CPD are estimated. In Fig. 6 the first row illustrates correlation matrices
∈ R36×36 based on correlations computed between the ratio of stroke voxels
and mean CPD for all subjects (first column), for LH stroke subjects (second
column) and RH stroke subjects (third column). In Fig. 6 second row the mean
ROS score is used instead of the mean CPD to estimate the correlations. In Fig.
6 a deviation of correlation values between LH and RH stroke subjects is visible,
since correlations only between a stroke voxel ratio (>0) on the ipsilateral side
can be computed. In the first row of Fig. 6 positive correlations are observable,
which can be interpreted as regions greater affected by a stroke lesion show a
higher mean CPD and a lower mean CPD if they are less affected. Additionally,
stronger blocks of correlation scores are observable in the default mode network
regions (except the temporal component Default A) or somato motoric areas. In
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Fig. 6: Row one visualises the network wise correlations between the stroke voxel
ratio and the CPD score using all stroke subjects (first column), LH stroke
(second column) and RH stroke subjects (third column). Visualisation of network
wise correlations between the stroke voxel ratio and the ROS are shown in row
two.

the second row of Fig. 6 especially for RH stroke subjects (right) a division of
RH and LH correlation values according to their sign is visible, since the severity
of stroke and number of subjects is higher in this cohort compared to LH stroke
subjects. The voxel ratio positively correlates with the ROS of the controlateral
side and negatively with the ROS of the ipsilateral side. This suggests a decrease
of the ROS in ipsilateral and an increase of the ROS in controlateral regions
with increased stroke voxel ratio in the stroke hemisphere. In Fig. 7 the target
regions for possible reorganisational processes after stroke, computed using the
ROS proposed are visualised for LH stroke subjects (left) and RH stroke subjects
(right). The first row visualises the stroke location, the second row the ROS and
the third and fourth row the histogram equalized reorganisation vectors. Subject
S08 shows possible target regions in its strokes neighbourhood on the ipsilateral
side. S11 shows possible symmetric reorganisation targets. S13 and S23 with a
severe mediainfarct on the RH show both on the contro and ipsilateral side of
non-stroke region an increased ROS as well as on the controlateral side in the
stroke region.

4 Conclusion

We present a methodology to assess connectivity pattern deviation in developing
functional networks and to estimate possible target regions of reorganisational
processes after ischaemic stroke. According to the results we can conclude that
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stroke subjects show a higher deviation compared to control subjects, especially
more on the hemisphere of stroke location. Control subjects show decreasing
deviation over age to age matched controls, with highest changes occuring in
the prefrontal cortex and temporal lobe. We proposed a reorganisational score,
which identifies ipsi-lateral and symmetric networks in neighbourhood of the
stroke location as possible indicator for reorganisation in developing resting state
networks. The limit of our approach lies in the size and heterogeneity of the
dataset. For future work we will evaluate different stroke datasets with similar
locations of the stroke lesions and a higher number of participants.
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