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Abstract. The detection of bone lesions is important for the diagnosis
and staging of multiple myeloma patients. The scarce availability of an-
notated data renders training of automated detectors challenging. Here,
we present a transfer learning approach using convolutional neural net-
works to detect bone lesions in computed tomography imaging data. We
compare different learning approaches, and demonstrate that pretrain-
ing a convolutional neural network on natural images improves detection
accuracy. Also, we describe a patch extraction strategy which encodes
different information into each input channel of the networks. We train
and evaluate our approach on a dataset with 660 annotated bone lesions,
and show how the resulting marker map high-lights lesions in computed
tomography imaging data.

1 Introduction

Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow. The
most common symptom for MM are bone lesions. Bone lesions can be detected
in computed tomography (CT) scans. An automated detection of lesions in CT
scans is desirable, because it would accelerate reading images and could help
during diagnosis and staging of multiple myeloma patients. The detection is dif-
ficult, and until now, no algorithms for automatic lesion detection in CT data
have been developed. Deep learning approaches such as convolutional neural net-
works (CNN) are a promising direction for this problem. However, a difficulty
arising with MM is the limited availability of annotated training data. The num-
bers of examples are smaller than those typically used for training CNNs, and
the representation capacity suffers correspondingly.

Here, we demonstrate two approaches to perform lesion detection in MM
using CNN architectures. First, we evaluate transfer learning as a means of
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improving the performance of our approach by transferring knowledge from a
natural image classification task. Secondly, we explore two ways of representing
visual input data for CNN training: a single channel approach, and an approach
which distributes ranges of different hounsfield unit to different channels. We
compare these approaches on a data set containing overall 660 annotated bone
lesions.

Related work Convolutional neural networks [3] and transfer learning are used in
medical imaging for a variety of applications. Transfer learning aims to transfer
knowledge learned in a source task to improve learning in a target task [7].
Our approach uses a network pre-trained as a classifier on the natural image
database ImageNet [1] (the source task) and then applies it as a detector of
bone lesions (the target task). Fine-tuning on images extracted from CT scans is
applied to adapt to the target task. Shin et al. describe a similar approach in [5].
They compare different architectures and learning protocols, transfer learning
and random initalization, for lymph node detection and interstitial lung disease
classification [5]. In [4] the authors show how convolutional neural networks
can be used to reduce false positives while detecting sclerotic bone lesions in
computer aided detection (CAD) tools. In the most closely related work, Xu et
al. use a novel neural network architecture to detect bone lesions in multiple
myeloma patients in multimodal PET/CT scans [8].

The proposed method differs from previous approaches in several aspects.
It does not need a prior candidate detection stage before using the CNN [4],
instead we use the CNN to detect lesions directly. Our approach operates on
single 2D patches, while previous work used ensembles of neural networks and
extracted multiple patches at one volume location [5, 4]. Finally, we use volumes
of a single modality (CT), instead of using a multimodal approach [8].

2 Method

We treat lesion detection as a classification task. We extract local image patches,
and train a convolutional neural network to classify patches into lesion and non-
lesion. We compare two ways of extracting image information and encoding it in
image patches used by the CNN: a single channel approach, and a three channel
approach. Furthermore, we compare two learning protocols to evaluate if the
transfer of parameters of pre-trained models is superior to random initialization.

2.1 Extracting image patches

We extract a set of image patches P for training and testing from a set of whole
body CT volumes {V1, . . . ,Vn}. Due to the anisotrophy of the volumes in axial
direction as well as to match the input channels of the CNN after transferring
from a 2D natural image task, the image patches are extracted in 2D along the
axial axes. For each volume Vi ∈ {V1, . . . ,Vn} the center positions of all lesions
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{xli
1 , . . . ,x

li
j } are annotated. Additionally a bone mask Mi is provided for each

Vi. All patches p ∈ P are extracted with a size of 15x15 millimetres.
For each Vi and each lesion xli

m a positive patch ppi
m is extracted centred around

xli
m. pli

m is augmented by random rotations and mirroring. This results in a set of
positive patches Ppi

for each Vi. A set of negative patches Pni
= {pri

1 , . . . ,pri
m}

is extracted from Vi at m random positions xri
m inside Mi, with the restriction

that they do not overlap with the extracted patches in Ppi . The negative patches
pri
m are not augmented. The final set of patches used for training and testing is

given by P = {Ppi
∪Pni

} for all i = 1 . . . n.
Figure 1 shows two ways of extracting a patch and representing the informa-

tion for CNN training:

Fig. 1. Positive patch extraction: A patch is extracted along the axial axes around
the center of a lesion. Single-channel patch extraction extracts gray-scale patches. 3-
Channel patch extraction encodes information of a low-attenuation, high-attenuation,
soft tissue window, into a combined three channel image.

1. Single channel patches: In the first approach a set of gray-scale patches PG

is extracted as described above. To implement transfer learning on pre-trained
networks, and to match the input size of the network, the patches are rescaled
to 64x64 and the same patch is fed into each of the three input channels.
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2. Three channel patches: The second approach exploits the quantitative
character of CT images, enabling the splitting of value ranges in a consistant
manner across examples. We use three channels to encode different information
extracted from the image. By this decoupling, the network can potentially find
more meaningful features in different ranges corresponding to specific anatomical
characteristics. We extract 3-Channel patches P3C by assigning different ranges
of Hounsfield Units (HU) to three different channels. The first channel focuses
on a low-attenuation window of values smaller than 100 HU, the second on a
high-attenuation window (>400 HU) and the third on a soft tissue window [100-
400 HU]. The patches in P3C are rescaled to 64x64 to match the input size of
the network.

2.2 Network architecture

We use the VGG-16 architecture [6] as a base for our network. This enables
the comparison of networks trained only on our data to transfer learning using
networks trained on substantially larger sets of natural images. We use 64x64x3
as input size. Except the fully connected layers and the classification layer at the
end of the network, the architecture remains unchanged to the original VGG-
16 network. These layers are exchanged to fit the detection task resulting in a
single output value. The final model used is depicted in Figure 2. It consists
of five convolutional blocks with two, respectively three convolutional layers
separated by a max pooling layer with a stride of 2. In the end of the network
three fully-connected layers are used. Rectified Linear Units (ReLU) are used as
activation function for all hidden layers. A sigmoid activation function is used
for the output unit to produce a probability value of seeing a lesion. Depending

Fig. 2. The CNN architecture as used in our approach. It is based on the architecture
of VGG-16 [6], the input shape and the fully connected layers at the end of the network
are adapted to fit our detection task.
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on the learning protocol used, we input different image patches to this network.
The single channel patches PG are rescaled from size 15x15 to 64x64 and the
same patch is given to each channel of the input layer. The three channel patches
P3C are rescaled from 15x15x3 patches to 64x64x3 and each channel of the patch
is used as input to one of the three input channels.

2.3 Four models

Two different learning protocols, transfer learning and random initialization as
well as two different patch extraction strategies, single channel patches and 3-
channel patches, are used. For all four models trained the architecture of the
network shown in Figure 2 remains unchanged.
1. Transfer Learning: The weights of our network are transfered from pre-
training a VGG-16 network on the natural image dataset ImageNet [1]. The
custom fully-connected layers are initialized randomly. For the transfer learning
approach the first six layers shown in Figure 2 are frozen and the neural network
is fine-tuned on PG. We fine-tune the model with stochastic gradient descent
and use binary-crossentropy as loss function. The network is fine-tuned for 30
epochs. This approach will be called TL-approach.
2. Random Initialization: Instead of transferring from a pre-trained VGG-16
model all weights and biases are initialized randomly. The whole CNN is trained
with stochastic gradient descent from scratch. Training is done for 40 epochs.
Only PG is used for training. We will call this approach RI-approach.
3. 3-Channel Transfer Learning approach: For this approach the transfer
learning protocol is used as described above. The only difference is that we use
3-channel patches P3C for training and evaluating the model. The approach will
be denoted as 3C-TL-approach.
4. 3-Channel Random Initialization approach: The random initialization
learning protocol is used in combination with 3-channel patches P3C . The ap-
proach will be denoted as 3C-RI-approach.

2.4 Volume parsing

After training the network, we apply the detection to a volume of the test set
Vj ∈ {V1, . . . ,Vt}, which was not part of the training process. At every posi-

tion xj
i within Mj an image patch pj

i of size 15x15 millimetres along the axial
axes is extracted. Depending on the model used, single channel or three channel
patches are extracted, rescaled and used as input to the network. The output is
a probability value P (pj

i ) that the patch is showing a lesion. The probabilities
are visualized as a probability map of the same size as Vj .

3 Evaluation

Data For training and evaluation a subset of the VISCERAL Detection Gold
Corpus [2] is used. We use a set of 25 volumes for which manually annotated
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Table 1. Number of samples in the dataset

lesion non-lesion

Training set 2153 2124
Validation set 299 294
Test set 538 530

2990 2948

lesions and organ masks are provided. Three of those volumes, with a total of
62 lesions, are used for the evaluation of volume parsing in whole CT scans.
In the 22 CT volumes used for training and validating the CNN, a total of
598 lesions are annotated. 5938 image patches are extracted and split randomly
into a training (72%), validation (10%) and test (18%) set. The training and
validation set are used during the training phase of the networks. The test set is
used for the evaluation of the models. Table 1 gives an overview of the dataset
used for the supervised fine tuning, respectively training of the network.

Evaluation on patches After training we evaluate the four approaches on a
dataset of image patches. We measure true positives, false positives, true neg-
atives, and false negatives. F-Score, precision and recall are computed on the
test set. To evaluate if the transfer of parameters is beneficial the TL-approach
and the RI-approach, respectively the 3C-TL-approach and the 3C-RI-approach
are compared. For the evaluation of the different patch extraction strategies the
results of the TL-approach and the 3C-TL-approach, respectively RI-approach
and 3C-RI-approach are compared.

Evaluation of volume parsing We parse CT volumes that were not used for train-
ing. Bone masks are used to restrict the Region of Interest (ROI) to bones. We
predict a probability score for each position in the ROI and generate probability
maps. Those probability maps are compared visually to evaluate the ability of
the different models to detect lesions.

4 Results

Results on image patches Table 2 compares different performance measures for
all four models. All four approaches can classify image patches into lesion and
non-lesion with high accuracy. The results show that models using transfer learn-
ing achieve a higher F-Score, and AUC, outperforming networks trained only on
the CT image patches. Both approaches using transfer learning (TL-approach
and 3C-TL-approach) outperform the corresponding random initialization ap-
proaches. The 3C-TL-approach has the lowest number of false negatives, which
is critical as lesions should not stay undetected.

The comparison of the different patch extraction strategies demonstrates that
the models trained with three channel patches performs better. The 3-channel-
TL-approach (0.92) has a slightly higher F-Score than transfer learning with gray
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Table 2. Comparison of detection performance measures for the four approaches:
transfer learning (TL), random initialization (RI) and the 3 channel approaches (3C-
TL and 3C-RI).

Precision Recall F-Score AUC

TL 0.91 0.87 0.89 ± 0.010 0.96 ± 0.006
RI 0.82 0.84 0.83 ± 0.010 0.91 ± 0.008
3C-TL 0.95 0.90 0.92 ± 0.008 0.97 ± 0.004
3C-RI 0.92 0.90 0.91 ± 0.010 0.97 ± 0.004

Fig. 3. Results on image patches. In the upper row confusion matrices for all four
approaches are given. The lower row show examples for correct classifications and
misclassifications of the networks.

scale patches (0.89). Absolute numbers and examples of true/false classifications
are given in Figure 3. The increased accuracy of the 3-channel approaches could
be due to the decoupling of the different HU ranges enabling a better exploitation
of the CNN architecture.

Results of volume parsing Three details of probability maps for axial slices are
shown in Figure 4. The TL-approach produces smooth results with a lot of noise,
while the RI-approach and the 3C-RI-approach produce more noise and sharper
borders between regions classified as lesion/non-lesion. The 3C-TL approach
produces the sharpest borders between regions and less noise than both RI-
approaches, consistent with its higher quantitative accuracy. The qualitative
analysis shows that the 3C-TL-approach outperforms the other approaches.



8

Fig. 4. Details of probability maps for detecting bone lesions in axial slices. Each row
depicts the groundtruth and the detection probability of the three approaches.

The probability maps show that all approaches can detect the lesions an-
notated in the groundtruth. However, the false positive rate is high for all ap-
proaches with the 3C-TL approach showing the best performance. This indicates
that, due to the limited number of annotated lesions in the training data, the
generalization of the network is limited.

5 Conclusion

We propose an algorithm for automatic detection of bone lesions in CT data of
multiple myeloma patients. We evaluated two questions: can we transfer mod-
els from natural image data to improve accuracy, and does a decoupling of HU
ranges in the input representation help classification. We compared four differ-
ent approaches: a CNN trained on a set of lesion and non-lesion examples of
CT imaging data, a CNN pre-trained on natural images, transferred and fine
tuned on the CT data, and an alternative 3-channel representation of the image
data for both approaches. Results show that classification with high accuracy is
possible. Transfer learning, and splitting image information into channels, both
improve detection accuracy. Qualitative experiments on calculating marker maps
for lesions on full volumes, show that on large volumes the suppression of false
positives still needs to be improved. By providing insight the into number of
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lesions detected as well as their extend, the proposed method could be used in
clinical context as a tool to monitor the progression of the disease.
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