Skip to main content Deutsch

ELIA | Children and Adolescents (2 - 18 yrs)

Sorry, this content is only available in German!

Childhood Neuroblastoma Microscopy Image Analysis

Conference and Journals Publications

Gutwein, S., Kampel, M., Taschner-Mandl, S., Licandro, R. (2025). FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_3 - Best Poster Presentation Award.

Gutwein, S.; Kampel, M.; Taschner-Mandl, S. and Licandro, R., GENUINE: Genomic and Nucleus Information Embedding for Single Cell Genetic Alteration Classification in Microscopic Images. In Proceedings of the 13th International Conference on Pattern Recognition Applications and Methods - ICPRAM; ISBN 978-989-758-684-2; ISSN 2184-4313, SciTePress, pages 27-36. DOI: 10.5220/0012319700003654S, Nomination Best Student Paper Award, February 2024.

Gutwein, S., Kampel, M., Taschner-Mandl, S., Licandro, R., FISHing in Uncertainty: Synthetic Contrastive Learning for Genetic Aberration Detection. In: Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. MICCAI-UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-73158-7_3  openreview, Best Presentation Award, October 2024

Abstract

S. Gutwein, S. Taschner-Mandl, M.Kampel, R. Licandro, GENUINE: Genomic and Nucleus Information Embedding for Single Cell Genetic Alteration Classification in Microscopic Images, Workshop of the Austrian Association of Pattern Recognition, November 2023.

Childhood Functional Connectivity Analysis and Representation Learning

We are studying paediatric brain plasticity based on resting state functional magnetic resonance imaging data acquired from 7 to 18 years. Our research focuses on developing novel techniques to assess developmental pattern of functional connectivity on the one hand and reorganisational patterns in paediatric stroke patients.

Conference and Journal Publications

Licandro R., Nenning K.-H., Schwartz E., Kollndorfer K., Bartha-Doering L., Langs G., “Changing Functional Connectivity in the Child’s Developing Brain Affected by Ischaemic Stroke”, 1st International Workshop PerInatal, Preterm and Paediatric Image Analysis Workshop (MICCAI - PIPPI), Athens, October 2016. http://pippi.cs.ucl.ac.uk/pippi2016/proceedings.html.

Licandro R., Nenning K.-H, Schwartz E., Kollndorfer K., Bartha-Doering L., Liu H., Langs G., “Assessing Reorganisation of Functional Connectivity in the Infant Brain”. In: Cardoso M. et al. (eds) Fetal, Infant and Ophthalmic Medical Image Analysis. FIFI 2017, OMIA 2017. Lecture Notes in Computer Science, vol 10554. Springer, Cham. ISBN: 978-3-319-67560-2, https://doi.org/10.1007/978-3-319-67561-9_2

Childhood Leukaemia Flowcytometry Analysis

Conference and Journal Publications

Licandro R., Miloserdov K., Reiter M., Kampel M., „GMM Interpolation for Blood Cell Cluster Alignment in Childhood Leukaemia”, Proceeding of the ARW and OAGM workshop 2019, Steyr (Austria), May 2019. https://doi.org/10.3217/978-3-85125-663-5-39

Scheithe J., Licandro R., Rota P., Reiter M., Diem M., Kampel M. “Monitoring Acute Lymphoblastic Leukemia Therapy with Stacked Denoising Autoencoders”. In: Peter J., Fernandes S., Eduardo Thomaz C., Viriri S. (eds) Computer Aided Intervention and Diagnostics in Clinical and Medical Images. Lecture Notes in Computational Vision and Biomechanics, vol 31. Springer, Cham, 2019. Best Paper https://doi.org/10.1007/978-3-030-04061-1_19

Licandro R. and Schlegl T., Reiter M., Diem M., Dworzak M., Schumich A., Langs G., Kampel M., "WGAN Latent Space Embeddings for Blast Identification in Childhood Acute Myeloid Leukaemia”, 24th International Conference on Pattern Recognition (ICPR) 2018, Beijing, August 2018. https://doi.org/10.1109/ICPR.2018.8546177

Licandro R., Reiter M., Diem M., Dworzak M., Schumich A., Kampel M., “Application of Machine Learning for Automatic MRD Assessment in Paediatric Acute Myeloid Leukaemia”. 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM), Volume 1: pages 401-408, ISBN 978-989-758-276-9, Funchal Madeira (Portugal), January 2018, https://doi.org/10.5220/0006595804010408

Licandro R., Rota P., Reiter M., Kampel M., „Flow Cytometry Based Automatic MRD Assessment in Acute Lymphoblastic Leukaemia: Longitudinal Evaluation of Time-Specific Cell Population Models”, 14th International Workshop on Content-based Multimedia Indexing, Bucharest, June 2016. pp. 1-6, http://doi.org/10.1109/CBMI.2016.7500274