-
Seeböck, P., Orlando, J. I., Michl, M., Mai, J., Erfurth, U. S., & Bogunović, H. "Anomaly guided segmentation: Introducing semantic context for lesion segmentation in retinal OCT using weak context supervision from anomaly detection". Medical Image Analysis. 2024. [pdf]
-
Burger, B., Bernathova, M., Seeböck, P., Singer, C. F., Helbich, T. H., & Langs, G. "Deep learning for predicting future lesion emergence in high-risk breast MRI screening: a feasibility study". European Radiology Experimental. 2023. [pdf]
-
Reiter, G. S., Bogunovic, H., Schlanitz, F., Vogl, W. D., Seeböck, P., Ramazanova, D., & Schmidt-Erfurth, U. "Point-to-point associations of drusen and hyperreflective foci volumes with retinal sensitivity in non-exudative age-related macular degeneration". Eye. 2023. [pdf]
-
Kocak, B., Chepelev, L. L., Chu, L. C., Cuocolo, R., Kelly, B. S., Seeböck, P., ... & Pinto dos Santos, D. "Assessment of RadiomIcS rEsearch (ARISE): a brief guide for authors, reviewers, and readers from the Scientific Editorial Board of European Radiology". European Radiology. 2023. [pdf]
-
König, M.*, Seeböck, P.*, Gerendas, B. S., Mylonas, G., Winklhofer, R., Dimakopoulou, I., & Schmidt-Erfurth, U. M. Quality assessment of colour fundus and fluorescein angiography images using deep learning. British Journal of Ophthalmology. 2022. [pdf] *Contributed equally.
-
Schwarzenbacher L.*, Seeböck P.*, Schartmüller D., Leydolt C., Menapace R., Schmidt-Erfurth U. „Artificial Intelligence in Anterior Segment OCT Imaging: Automatic Segmentation of IOL, the Retrolental Space and Berger’s Space using a Deep Learning Algorithm”. Acta Ophthalmologica. 2022. [pdf] *Contributed equally.
-
Holomcik D.*, Seeböck P.*, Gerendas B.S., Mylonas G., Najeeb B.H.; Schmidt-Erfurth U., Deak G. “Segmentation of Macular Neovascularization and Leakage in Fluorescein Angiography Images in Neovascular Age-Related Macular Degeneration using Deep Learning”. Nature Eye. 2022. [pdf] *Contributed equally.
-
Hofer D., Schmidt-Erfurth U., Orlando J.I., Goldbach F., Gerendas B.S., Seeböck P. "Improving Foveal Avascular Zone Segmentation in Fluorescein Angiograms by Leveraging Manual Vessel Labels from Public Color Fundus Pictures". Biomedical Optics Express. 2022. [pdf]
-
Seeböck P., Vogl W.D., Waldstein S.M., Orlando J.I., Baratsits M., Alten T., Arikan M., Mylonas G., Bogunović B., Schmidt-Erfurth U. “Linking Function and Structure with ReSenseNet: Predicting Retinal Sensitivity from Optical Coherence Tomography using Deep Learning”. Ophthalmology Retina. 2022. [pdf]
-
Waldstein S.M.*, Seeböck P.*, Donner R., Sadeghipour A., Bogunovic H., Osborne A., Schmidt-Erfurth U. “Unbiased identification of novel subclinical imaging biomarkers using unsupervised deep learning”. Scientific Reports. 2020. [pdf] *Contributed equally.
- Seeböck P, Romo-Bucheli D, Orlando JI, Gerendas BS, Waldstein SM, Schmidt-Erfurth U, Bogunovic H. "Reducing image variability across OCT devices with unsupervised unpaired learning for improved segmentation of retina". Biomedical Optics Express. 2020. [pdf]
- Seeböck, P., Orlando, J.I., Schlegl, T., Waldstein, S., Bogunovic, H., Klimscha, S., Langs, G., Schmidt-Erfurth, U. "Exploiting Epistemic Uncertainty of Anatomy Segmentation for Anomaly Detection in Retinal OCT". IEEE Transactions on Medical Imaging. 2019.
- Seeböck, P., Romo-Bucheli, D. , Waldstein, S. , Bogunovic, H., Orlando, J.I., Gerendas, B.S., Langs, G., Schmidt-Erfurth, U. "Using CycleGANs for effectively reducing image variability across OCT devices and improving retinal fluid segmentation." IEEE International Symposium on Biomedical Imaging (ISBI) 2019. [pdf]
- Seeböck, P., Waldstein, S., Klimscha, S., Bogunovic, H., Schlegl, T., Gerendas, B. S., Donner, R., Schmidt-Erfurth, U., Langs, G. "Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data". IEEE Transactions on Medical Imaging. 2019.
- Seeböck, P., Donner, R., Schlegl, T., & Langs, G. "Unsupervised Learning for Image Category Detection". Proceedings of the 22nd Computer Vision Winter Workshop. 2017. (Best Paper Award) [pdf]
- Seeböck, P., Waldstein, S., Klimscha, S., Gerendas, B. S., Donner, R., Schlegl, T., Langs, G. "Identifying and Categorizing Anomalies in Retinal Imaging Data". NIPS Workshop on Machine Learning for Health. 2016. [pdf]
- Seeböck P. “Discovery of Biomarker Candidates in Retinal OCT Images using Deep Learning“. Doctoral Thesis. 2019, Vienna, Medical University of Vienna. [pdf]
- Philipp Seeböck. Deep Learning In Medical Image Analysis. Master’s thesis, Technical University of Vienna, Austria, 2015.